binaryninja/workflow/
activity.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
use std::{
    ffi::{c_void, CString},
    ptr::NonNull,
};

use binaryninjacore_sys::*;
use serde_derive::{Deserialize, Serialize};

use crate::{
    rc::{Ref, RefCountable},
    string::{BnString, IntoCStr},
    workflow::AnalysisContext,
};

// TODO: This needs to be made into a trait similar to that of `Command`.
/// An `Activity` represents a fundamental unit of work within a workflow. It encapsulates
/// a specific analysis step or action as a callback function, which is augmented by a configuration.
/// The configuration defines the activity's metadata, eligibility criteria, and execution semantics,
/// allowing it to seamlessly integrate into the workflow system.
///
/// ```
/// use binaryninja::workflow::{activity, Activity, AnalysisContext};
///
/// fn activity_callback(context: &AnalysisContext) {
///     // Perform custom analysis using data provided in the context.
/// }
///
/// let config = activity::Config::action(
///     "example.analysis.analyzeFunction",
///     "Analyze functions",
///     "This activity performs custom analysis on each function"
/// ).eligibility(activity::Eligibility::auto());
/// let activity = Activity::new_with_action(config, activity_callback);
///
/// // Register the activity in a `Workflow`.
/// ```
///
/// See [Activity Fundamentals](https://docs.binary.ninja/dev/workflows.html#activity-fundamentals) for more information.
#[repr(transparent)]
pub struct Activity {
    pub(crate) handle: NonNull<BNActivity>,
}

impl Activity {
    #[allow(unused)]
    pub(crate) unsafe fn from_raw(handle: NonNull<BNActivity>) -> Self {
        Self { handle }
    }

    pub(crate) unsafe fn ref_from_raw(handle: NonNull<BNActivity>) -> Ref<Self> {
        Ref::new(Self { handle })
    }

    pub fn new(config: impl AsConfig) -> Ref<Self> {
        unsafe extern "C" fn cb_action_nop(_: *mut c_void, _: *mut BNAnalysisContext) {}
        let config = config.as_config();
        let result =
            unsafe { BNCreateActivity(config.as_ptr(), std::ptr::null_mut(), Some(cb_action_nop)) };
        unsafe { Activity::ref_from_raw(NonNull::new(result).unwrap()) }
    }

    pub fn new_with_action<F>(config: impl AsConfig, mut action: F) -> Ref<Self>
    where
        F: FnMut(&AnalysisContext),
    {
        unsafe extern "C" fn cb_action<F: FnMut(&AnalysisContext)>(
            ctxt: *mut c_void,
            analysis: *mut BNAnalysisContext,
        ) {
            let ctxt = &mut *(ctxt as *mut F);
            if let Some(analysis) = NonNull::new(analysis) {
                ctxt(&AnalysisContext::from_raw(analysis))
            }
        }
        let config = config.as_config();
        let result = unsafe {
            BNCreateActivity(
                config.as_ptr(),
                &mut action as *mut F as *mut c_void,
                Some(cb_action::<F>),
            )
        };
        unsafe { Activity::ref_from_raw(NonNull::new(result).unwrap()) }
    }

    pub fn name(&self) -> String {
        let result = unsafe { BNActivityGetName(self.handle.as_ptr()) };
        assert!(!result.is_null());
        unsafe { BnString::into_string(result) }
    }
}

impl ToOwned for Activity {
    type Owned = Ref<Self>;

    fn to_owned(&self) -> Self::Owned {
        unsafe { RefCountable::inc_ref(self) }
    }
}

unsafe impl RefCountable for Activity {
    unsafe fn inc_ref(handle: &Self) -> Ref<Self> {
        Ref::new(Self {
            handle: NonNull::new(BNNewActivityReference(handle.handle.as_ptr()))
                .expect("valid handle"),
        })
    }

    unsafe fn dec_ref(handle: &Self) {
        BNFreeActivity(handle.handle.as_ptr());
    }
}

pub trait AsConfig {
    fn as_config(&self) -> CString;
}

impl AsConfig for &str {
    fn as_config(&self) -> std::ffi::CString {
        self.to_cstr()
    }
}

/// The configuration for an `Activity`, defining its metadata, eligibility criteria, and execution semantics.
#[must_use]
#[derive(Deserialize, Serialize, Debug)]
pub struct Config {
    /// A unique identifier for the activity.
    pub name: String,

    /// A human-readable title for the activity.
    pub title: String,

    /// A brief description of the activity's purpose and functionality.
    pub description: String,

    /// The role of the activity within the workflow, determining its behavior and interaction with other activities.
    #[serde(default)]
    pub role: Role,

    /// Names by which this activity has previously been known.
    #[serde(skip_serializing_if = "Vec::is_empty", default)]
    pub aliases: Vec<String>,

    /// The conditions that determine when the activity should execute.
    #[serde(default)]
    pub eligibility: Eligibility,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub dependencies: Option<Dependencies>,
}

#[derive(Deserialize, Serialize, Debug)]
pub struct Dependencies {
    #[serde(skip_serializing_if = "Vec::is_empty", default)]
    pub downstream: Vec<String>,
}

impl Config {
    /// Creates a new instance with role [`Role::Action`] and the specified name, title, and description.
    pub fn action(
        name: impl Into<String>,
        title: impl Into<String>,
        description: impl Into<String>,
    ) -> Self {
        Self {
            name: name.into(),
            title: title.into(),
            description: description.into(),
            role: Role::Action,
            aliases: Vec::new(),
            eligibility: Eligibility::default(),
            dependencies: None,
        }
    }

    /// Sets the [`aliases`](field@Config::aliases) field, which contains names by which this activity has previously been known.
    pub fn aliases<I, S>(mut self, aliases: I) -> Self
    where
        I: IntoIterator<Item = S>,
        S: Into<String>,
    {
        self.aliases = aliases.into_iter().map(|s| s.into()).collect();
        self
    }

    /// Sets the [`eligibility`](field@Config::eligibility) field, which defines the conditions under which this activity is eligible for execution.
    pub fn eligibility(mut self, eligibility: Eligibility) -> Self {
        self.eligibility = eligibility;
        self
    }

    /// Sets the [`dependencies`](field@Config::dependencies) field to specify dependencies that should be triggered after this activity completes.
    pub fn downstream_dependencies<I, S>(mut self, dependencies: I) -> Self
    where
        I: IntoIterator<Item = S>,
        S: Into<String>,
    {
        self.dependencies = Some(Dependencies {
            downstream: dependencies.into_iter().map(|s| s.into()).collect(),
        });
        self
    }
}

impl AsConfig for &Config {
    fn as_config(&self) -> CString {
        serde_json::to_string(self)
            .expect("Failed to serialize Config")
            .to_cstr()
    }
}

impl AsConfig for Config {
    fn as_config(&self) -> CString {
        (&self).as_config()
    }
}

/// Defines the behavior of the activity in the workflow.
///
/// NOTE: Activities with the subflow role are only permitted in module workflows.
/// Subflows are not supported within function workflows.
#[derive(Deserialize, Serialize, Debug)]
#[serde(rename_all = "camelCase")]
#[derive(Default)]
pub enum Role {
    /// The default role; performs a specific task.
    #[default]
    Action,

    /// Contains child activities and uses an eligibility handler to determine which child activities to execute.
    /// This enables the ability to have a dynamic and reactive execution pipeline.
    Selector,

    /// Creates a new task context and asynchronously processes its workflow sub-graph on a new thread within
    /// the workflow machine. The subflow executes asynchronously from the requestor, allowing the original
    /// thread to return immediately. Within this context, multiple task actions can be enqueued, enabling
    /// extensive parallel processing. After completing its workflow sub-graph, it enters a stall state,
    /// waiting for all its asynchronous task actions to complete.
    Subflow,

    /// Asynchronously processes the workflow graph on a new thread within the workflow machine.
    /// `Task` activities enable the pipeline to execute asynchronously from its requestor. `Task` activities
    /// require a task context to be present; if no task context exists, they execute immediately in the
    /// current thread.
    Task,

    Sequence,
    Listener,
}

/// The conditions that determine when an activity should execute.
#[must_use]
#[derive(Deserialize, Serialize, Debug)]
#[serde(rename_all = "camelCase")]
pub struct Eligibility {
    /// An object that automatically generates a boolean control setting and corresponding predicate.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub auto: Option<Auto>,

    /// Indicates whether the activity should run only once across all file/analysis sessions.
    /// Once the activity runs, its state is saved persistently, and it will not run again unless
    /// explicitly reset. This is useful for activities that only need to be performed exactly once,
    /// such as initial setup tasks.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub run_once: Option<bool>,

    /// Indicates whether the activity should run only once per session. Its state is not
    /// persisted, so it will run again in a new session. This is useful for activities
    /// that should be performed once per analysis session, such as initialization steps
    /// specific to a particular execution context.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub run_once_per_session: Option<bool>,

    /// Indicates if a subflow is eligible for re-execution based on its eligibility logic.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub continuation: Option<bool>,

    /// Objects that define the condition that must be met for the activity to be eligible to run.
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub predicates: Vec<Predicate>,

    /// Logical operator that defines how multiple predicates are combined.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logical_operator: Option<PredicateLogicalOperator>,
}

impl Eligibility {
    /// Creates a new instance without an automatically generated boolean control setting.
    /// The activity is eligible to run by default.
    pub fn without_setting() -> Self {
        Eligibility {
            auto: None,
            run_once: None,
            run_once_per_session: None,
            continuation: None,
            predicates: vec![],
            logical_operator: None,
        }
    }

    /// Creates a new instance with an automatically generated boolean control setting and corresponding predicate.
    /// The setting is enabled by default.
    pub fn auto() -> Self {
        Eligibility {
            auto: Some(Auto::new()),
            run_once: None,
            run_once_per_session: None,
            continuation: None,
            predicates: vec![],
            logical_operator: None,
        }
    }

    /// Creates a new instance with an automatically generated boolean control setting and corresponding predicate.
    /// The setting has the value `value` by default.
    pub fn auto_with_default(value: bool) -> Self {
        Eligibility {
            auto: Some(Auto::new().default(value)),
            run_once: None,
            run_once_per_session: None,
            continuation: None,
            predicates: vec![],
            logical_operator: None,
        }
    }

    /// Sets the [`run_once`](field@Eligibility::run_once) field, indicating whether the activity should run only once across all file/analysis sessions.
    pub fn run_once(mut self, value: bool) -> Self {
        self.run_once = Some(value);
        self
    }

    /// Sets the [`run_once_per_session`](field@Eligibility::run_once_per_session) field, indicating whether the activity should run only once per session.
    pub fn run_once_per_session(mut self, value: bool) -> Self {
        self.run_once_per_session = Some(value);
        self
    }

    /// Sets the [`continuation`](field@Eligibility::continuation) field, indicating whether a subflow is eligible for re-execution based on its eligibility logic.
    pub fn continuation(mut self, value: bool) -> Self {
        self.continuation = Some(value);
        self
    }

    /// Sets the predicate that must be satisfied for the activity to be eligible to run.
    pub fn predicate(mut self, predicate: impl Into<Predicate>) -> Self {
        self.predicates = vec![predicate.into()];
        self
    }

    /// Sets the predicates that must be satisfied for the activity to be eligible to run.
    /// If multiple predicates are provided, they are combined using a logical OR.
    pub fn matching_any_predicate(mut self, predicates: &[Predicate]) -> Self {
        self.predicates = predicates.to_vec();
        self.logical_operator = Some(PredicateLogicalOperator::Or);
        self
    }

    /// Sets the predicates that must be satisfied for the activity to be eligible to run.
    /// If multiple predicates are provided, they are combined using a logical AND.
    pub fn matching_all_predicates(mut self, predicates: &[Predicate]) -> Self {
        self.predicates = predicates.to_vec();
        self.logical_operator = Some(PredicateLogicalOperator::And);
        self
    }
}

impl Default for Eligibility {
    fn default() -> Self {
        Self::auto()
    }
}

/// Represents the request for an automatically generated boolean control setting and corresponding predicate.
#[must_use]
#[derive(Deserialize, Serialize, Debug, Default)]
pub struct Auto {
    /// The default value for the setting. If `None`, the setting is enabled by default.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub default: Option<bool>,
}

impl Auto {
    /// Creates a new `Auto` instance that represents a setting that is enabled by default.
    pub fn new() -> Self {
        Self { default: None }
    }

    /// Sets the `default` value for the setting.
    pub fn default(mut self, value: bool) -> Self {
        self.default = Some(value);
        self
    }
}

/// A predicate that can be used to determine the eligibility of an activity.
///
/// See [`ViewType`] and [`Setting`] for specific predicates that can be used.
#[must_use]
#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct Predicate {
    #[serde(flatten)]
    predicate_type: PredicateType,
    operator: Operator,
    value: serde_json::Value,
}

/// A predicate that checks the type of the [`BinaryView`](crate::binary_view::BinaryView).
#[must_use]
pub enum ViewType {
    In(Vec<String>),
    NotIn(Vec<String>),
}

impl ViewType {
    /// Creates a new predicate that checks if the type of the [`BinaryView`](crate::binary_view::BinaryView)
    /// _is_ in the provided list.
    pub fn in_<I, S>(values: I) -> Self
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        ViewType::In(values.into_iter().map(|s| s.as_ref().to_string()).collect())
    }

    /// Creates a new predicate that checks if the type of the [`BinaryView`](crate::binary_view::BinaryView)
    /// _is not_ in the provided list.
    pub fn not_in<I, S>(values: I) -> Self
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        ViewType::NotIn(values.into_iter().map(|s| s.as_ref().to_string()).collect())
    }
}

impl From<ViewType> for Predicate {
    fn from(predicate: ViewType) -> Self {
        match predicate {
            ViewType::In(value) => Predicate {
                predicate_type: PredicateType::ViewType,
                operator: Operator::In,
                value: serde_json::json!(value),
            },
            ViewType::NotIn(value) => Predicate {
                predicate_type: PredicateType::ViewType,
                operator: Operator::NotIn,
                value: serde_json::json!(value),
            },
        }
    }
}

/// A predicate that evaluates the value of a specific setting.
#[must_use]
pub struct Setting {
    identifier: String,
    operator: Operator,
    value: serde_json::Value,
}

impl Setting {
    /// Creates a new predicate that evaluates the value of a specific setting against `value` using `operator`.
    pub fn new(
        identifier: impl Into<String>,
        operator: Operator,
        value: impl serde::Serialize,
    ) -> Self {
        Self {
            identifier: identifier.into(),
            operator,
            value: serde_json::json!(value),
        }
    }

    /// Creates a new predicate that checks if the value of the setting is equal to `value`.
    pub fn eq(identifier: impl Into<String>, value: impl serde::Serialize) -> Self {
        Self::new(identifier, Operator::Eq, value)
    }

    /// Creates a new predicate that checks if the value of the setting is not equal to `value`.
    pub fn ne(identifier: impl Into<String>, value: impl serde::Serialize) -> Self {
        Self::new(identifier, Operator::Ne, value)
    }

    /// Creates a new predicate that checks if the value of the setting is less than `value`.
    pub fn lt(identifier: impl Into<String>, value: impl serde::Serialize) -> Self {
        Self::new(identifier, Operator::Lt, value)
    }

    /// Creates a new predicate that checks if the value of the setting is less than or equal to `value`.
    pub fn lte(identifier: impl Into<String>, value: impl serde::Serialize) -> Self {
        Self::new(identifier, Operator::Lte, value)
    }

    /// Creates a new predicate that checks if the value of the setting is greater than `value`.
    pub fn gt(identifier: impl Into<String>, value: impl serde::Serialize) -> Self {
        Self::new(identifier, Operator::Gt, value)
    }

    /// Creates a new predicate that checks if the value of the setting is greater than or equal to `value`.
    pub fn gte(identifier: impl Into<String>, value: impl serde::Serialize) -> Self {
        Self::new(identifier, Operator::Gte, value)
    }

    /// Creates a new predicate that checks if the value of the setting is in the provided list.
    pub fn in_(identifier: impl Into<String>, value: impl serde::Serialize) -> Self {
        Self::new(identifier, Operator::In, value)
    }

    /// Creates a new predicate that checks if the value of the setting is not in the provided list.
    pub fn not_in(identifier: impl Into<String>, value: impl serde::Serialize) -> Self {
        Self::new(identifier, Operator::NotIn, value)
    }
}

impl From<Setting> for Predicate {
    fn from(setting: Setting) -> Self {
        Predicate {
            predicate_type: PredicateType::Setting {
                identifier: setting.identifier,
            },
            operator: setting.operator,
            value: setting.value,
        }
    }
}

#[derive(Deserialize, Serialize, Debug, Clone)]
#[serde(rename_all = "camelCase", tag = "type")]
enum PredicateType {
    Setting { identifier: String },
    ViewType,
}

#[derive(Deserialize, Serialize, Debug, Copy, Clone)]
pub enum Operator {
    #[serde(rename = "==")]
    Eq,
    #[serde(rename = "!=")]
    Ne,
    #[serde(rename = "<")]
    Lt,
    #[serde(rename = "<=")]
    Lte,
    #[serde(rename = ">")]
    Gt,
    #[serde(rename = ">=")]
    Gte,
    #[serde(rename = "in")]
    In,
    #[serde(rename = "not in")]
    NotIn,
}

#[derive(Deserialize, Serialize, Debug, Clone, Copy)]
#[serde(rename_all = "camelCase")]
pub enum PredicateLogicalOperator {
    And,
    Or,
}